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Abstract
We discuss an algebraic method for constructing eigenvectors of the transfer
matrix of the eight-vertex model at the discrete coupling parameters. We
consider the algebraic Bethe ansatz of the elliptic quantum group Eτ,η(sl2) for
the case where the parameter η satisfies 2Nη = m1 + m2τ for arbitrary integers
N, m1 and m2. When m1 or m2 is odd, the eigenvectors thus obtained have not
been discussed previously. Furthermore, we construct a family of degenerate
eigenvectors of the XYZ spin chain, some of which are shown to be related
to the sl2 loop algebra symmetry of the XXZ spin chain. We show that the
dimension of some degenerate eigenspace of the XYZ spin chain on L sites is
given by N2L/N, if L/N is an even integer. The construction of eigenvectors of
the transfer matrices of some related interaction round a face models is also
discussed.

PACS numbers: 05.50.+q, 02.20.Uw, 02.30.lk, 75.10.−b

1. Introduction

The exact solution [1–4] of the eight-vertex model has played a central role in the study of
exactly solved models and integrable lattice models [5, 6]. The partition function of the model
was obtained by the functional method of the transfer matrix [1]. The eigenvectors of the
transfer matrix of the model were constructed through the vertex–interaction round a face
(IRF) correspondence [2–4]. The algebraic Bethe ansatz was formulated for the eight-vertex
model [7]. The knowledge of the exact solution is also important in the continuum limits of
the lattice models to the field theories and their connections to conformal field theories [8–11].
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Recently, another algebraic Bethe ansatz method has been introduced for the eight-vertex
model [12–14]. The method is based on the elliptic quantum group Eτ,η(sl2) [12, 13], which
is associated with the R-matrix of the eight-vertex solid-on-solid model (8VSOS model)
[3, 15], and is also related to Drinfeld’s quasi-Hopf algebra [16, 17]. In [14], however, the
eigenvectors of the transfer matrix of the eight-vertex model are discussed only for the case
where the parameter η is generic. Here we note that both for the generic and discrete η cases
some eigenvectors are discussed in [2–4, 7]. Thus, the primary purpose of this paper is to
discuss the algebraic Bethe ansatz of Eτ ,η(sl2) at the discrete coupling constants. Then, we
show that it also gives such eigenvectors of the eight-vertex model that are not discussed in
[2–4, 7].

Let us discuss the coupling parameters τ and η of Eτ ,η(sl2), explicitly. For an illustration,
we consider the Hamiltonian of the XYZ spin chain under the periodic boundary conditions,
which is given by the derivative of the homogeneous transfer matrix of the eight-vertex model

HXYZ =
L∑
j=1

(
JXσ

X
j σ

X
j+1 + JYσYj σ

Y
j+1 + JZσZj σ

Z
j+1

)
. (1.1)

In terms of the elliptic modulus k (or τ ) and the coupling parameter η, the coupling constants
of the XYZ chain are expressed as follows

JX = J (1 + k sn2(2η, k)) JY = J (1 − k sn2(2η, k)) JZ = J cn(2η, k)dn(2η, k).

(1.2)

Here sn(z, k), cn(z, k) and dn(z, k) denote the Jacobian elliptic functions. For the discrete cases
of [2–4, 7], the eigenvectors of the transfer matrix of the eight-vertex model are constructed
under the condition: 2Nη = 4m1K + 2im2K

′ where N, m1 and m2 are arbitrary integers. Here,
the symbols K and K ′ have denoted the complete elliptic integrals of the first and second
kind, respectively. It has not been discussed explicitly how one can construct eigenvectors for
the case of 2Nη = 2m1K + im2K

′ with given integers N, m1 and m2. Here we note that the
functional relation [1] is derived under the latter condition: 2Nη = 2m1K + im2K

′.
There is another motivation of the paper. Recently, it has been found that the XXZ

spin chain at the roots of unity has the spectral symmetry of the sl2 loop algebra [18].
The explicit expressions of the generators commuting with the XXZ Hamiltonian under the
periodic boundary conditions are given in appendix A. Several non-trivial properties of the
spectral degeneracy of the sl2 loop algebra have been discussed [19]. Here, the Hamiltonian
of the XXZ spin chain gives the special case of the XYZ Hamiltonian with JX = JY , which is
obtained by taking the trigonometric limit: k → 0 for the coupling constants of equation (1.2).
Furthermore, it has been suggested in [18] through a numerical study that the XYZ spin chain
should have a very large spectral degeneracy similar to the sl2 loop algebra symmetry of the
XXZ spin chain. In fact, the discrete condition: 2Nη = 2m1K + im2K

′ of the XYZ spin chain
corresponds to the roots of unity condition of the XXZ Hamiltonian, in the trigonometric limit.
Therefore, the construction of eigenvectors of the XYZ spin chain at the discrete coupling
constants should be important in studying the conjectured spectral degeneracy of the XYZ
spin chain.

The outline of the paper is given in the following. In section 2 we introduce the elliptic
quantum group Eτ ,η(sl2), briefly. In the paper we employ almost the same symbols as [14] for
Eτ , η(sl2). In section 3 we show the main results of the algebraic Bethe ansatz of Eτ ,η(sl2) for the
discrete η case of 2Nη = m1 + m2τ , which corresponds to the case of 2Nη = 2m1K + im2K

′

in the notation of [1–4]. Then, we obtain a slightly generalized expression for the eigenvalues
of the transfer matrix expressed in terms of rapidities. In section 4, for the discrete η case,
we discuss some important points in constructing eigenvectors for the 8VSOS model and its
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two variants: the ABF (or 8VRSOS) model and the cyclic SOS model [20–22], and then
for the eight-vertex model. In section 5, we formulate an algebraic method for constructing
degenerate eigenvectors of the transfer matrix of the eight-vertex model. It indeed gives a
large number of degenerate eigenvectors. For an illustration, we calculate analytically the
dimension of the largest degenerate eigenspace of the XYZ model defined on the L sites.
We show that it is given by N2L/N, if L/N is an even integer. Thus we see that the spectral
degeneracy can increase exponentially with respect to the lattice size L. Finally, in section 6,
we give some discussions. In order to make the paper self-consistent, some appendices are
provided. In appendix A, we review the sl2 loop algebra symmetry of the XXZ spin chain at
the root of unity. In appendix B, we explain the evaluation modules of the elliptic quantum
group Eτ,η(sl2). Finally in appendix C, we give the Boltzmann weights of the RSOS models
associated with the eight-vertex model.

2. Elliptic quantum group Eτ ,η(SL2)

The elliptic quantum group Eτ,η(sl2) is an algebra generated by meromorphic functions of a
variable h and the matrix elements of an operator-valued matrixL(z, λ)with non-commutative
entries [12–14], which satisfy the Yang–Baxter relation with a dynamical shift

R(12) (z12, λ − 2ηh(3)
)
L(1)(z1, λ)L

(2) (z2, λ − 2ηh(1)
)

= L(2)(z2, λ)L
(1)

(
z1, λ− 2ηh(2)

)
R(12)(z12, λ). (2.1)

Here h is a generator of the Cartan subalgebra h of sl2.
Let us formulate the R-matrix of the elliptic quantum group Eη,τ (sl2), explicitly. We

introduce the theta function

θ(z; τ ) = 2p1/4 sinπz
∞∏
n=1

(1 − p2n)(1 − p2n exp(2π iz))(1 − p2n exp(−2π iz)) (2.2)

where the nome p is related to the parameter τ by p = exp(π iτ ) with Im τ > 0 . Let V be the
two-dimensional complex vector space with the basis e[1] and e[−1]. Here we denote e[−1]
also as e[2], and let Eij denote the matrix satisfying Eije[k] = δjke[i]. Then, the R-matrix
R(z, λ) ∈ End(V ) is given by

R(z, λ; η, τ ) = E11 ⊗ E11 + E22 ⊗E22 + α(z, λ)E11 ⊗ E22

+ β(z, λ)E12 ⊗ E21 + β(z,−λ)E21 ⊗ E12 + α(z,−λ)E22 ⊗ E11 (2.3)

where h = E11 − E22 and α(z, λ) and β(z, λ) are defined by

α(z, λ) = θ(z)θ(λ + 2η)

θ(z− 2η)θ(λ)
β(z, λ) = − θ(z + λ)θ(2η)

θ(z− 2η)θ(λ)
. (2.4)

The elliptic quantum group Eτ,η(sl2) has two types of generators: (i) meromorphic
functions of f (h) of one-variable with period 1/η, (ii) the non-commutative matrix elements
of the L operator: a(z, λ), b(z, λ), c(z, λ) and d(z, λ), which satisfy the relations arising from
(2.1), such as shown in the following:

b(z1, λ)b(z2, λ + 2η) = b(z2, λ)b(z1, λ + 2η)

b(z1, λ)a(z2, λ + 2η) = b(z2, λ)a(z1, λ + 2η)β(z1 − z2, λ) (2.5)

+ a(z2, λ)b(z1, λ− 2η)α(z1 − z2,−λ).
Hereafter, we suppress the λ-dependence of the operators a(z, λ), b(z, λ), c(z, λ) and d(z, λ),
for simplicity.

The definition of the evaluation Verma module for the elliptic quantum groupEτ,η(sl2) is
explicitly given in appendix B.
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3. Algebraic Bethe ansatz at the discrete coupling parameters

Let W = V,1(z1)⊗ · · · ⊗ V,n
(zn) be the tensor product of evaluation modules V,j

(zj ) [14]
(see also appendix B). The total spin , is given by, = ,1 +,2 + · · · +,n. Here, we assume
, is given by , = 2- or , = 2- + 1 with an integer -. The transfer matrix T (z) of the
elliptic algebra is given by the trace of the L-operator acting on the tensor product space W .
We denote by v0 the highest weight vector of W : hv0 = ,v0.

Let us assume hereafter that the coupling parameter η is given by the discrete values:
2Nη = m1 + m2τ for some integers N, m1 and m2. We now take an integer m satisfying the
following condition:

2m = ,− rN for r ∈ Z. (3.1)

We consider the mth product of the creation operators: b(t1) · · · b(tm) with m rapidities
t1, . . . , tm. Here we note that the integers m and - can be different, while in [14] only the case
of m = - and generic η is discussed. Let us define a vector vc by vc = gc(λ)v0 where gc(λ)
is given by

gc(λ) = ecλ
m∏
j=1

θ(λ− 2ηj)

θ(2η)
. (3.2)

Let us first consider the case when m2 = 0. Then, through the fundamental commutation
relations such as shown in equation (2.5), we can show

T (w) b(t1) · · · b(tm)vc = C0(w) b(t1) · · · b(tm)vc
+

m∑
j=1

Cj b(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)vc. (3.3)

Here the coefficients C0 and Cj are given by

C0(w) = e−2ηc
m∏
j=1

θ(w − tj + 2η)

θ(w − tj )
+ (−1)rm1e2ηc

m∏
j=1

θ(w − tj − 2η)

θ(w − tj )

n∏
α=1

θ(w − pα)

θ(w − qα)

Cj = e−2ηc θ(2η)

θ(tj −w)

θ(tj −w + λ)

θ(λ)
(3.4)

×

 m∏
k=1;k �=j

fkj − (−1)rm1e4ηc
m∏

k=1;k �=j
fjk

n∏
α=1

θ(tj − pα)

θ(tj − qα)




where pα = zα + η(−,α + 1) and qα = zα + η(,α + 1) for α = 1, . . . , n and the symbol fjk
denotes the following:

fjk = θ(tj − tk − 2η)

θ(tj − tk)
. (3.5)

Thus, we have found that b(t1)b(t2) · · · b(tm)v is an eigenvector of the transfer matrix T (z)
with the eigenvalue C0(z), if rapidities t1, t2, . . . , tm satisfy the Bethe ansatz equations
n∏

k=1

θ(tj − pk)

θ(tj − qk)
= (−1)rm1e−4ηc

m∏
k=1;k �=j

θ(tj − tk + 2η)

θ(tj − tk − 2η)
for j = 1, . . . ,m . (3.6)

We remark that the factor (−1)rm1 can be important for the case when m1 is odd, which has
not been discussed in [2–4, 7].

When m2 �= 0, we consider the ‘renormalization’of the theta function [2]

θ̃ (z) = θ(z) exp
(
πm2(z− 1/2)2/(2Nη)

)
. (3.7)
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Then we have

θ̃ (z + 2Nη) = (−1)m1(m2+1)θ̃ (z). (3.8)

Replacing all the theta functions θ(z) in the above discussions with the renormalized ones
θ̃ (z), for the case of 2Nη = m1 + m2τ , we have

T (w) b(t1) · · · b(tm)vc = C̃0(w) b(t1) · · · b(tm)vc
+

m∑
j=1

C̃j b(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)vc. (3.9)

Here the coefficients C̃0 and C̃j are given by the following:

C̃0(w) = e−2ηc
m∏
j=1

θ̃ (w − tj + 2η)

θ̃(w − tj )
+ (−1)rm1(m2+1)e2ηc

m∏
j=1

θ̃ (w − tj − 2η)

θ̃(w − tj )

n∏
α=1

θ̃ (w − pα)

θ̃(w − qα)

C̃j = e−2ηc θ̃ (2η)

θ̃(tj −w)

θ̃(tj −w + λ)

θ̃(λ)

×

 m∏
k=1;k �=j

f̃ kj − (−1)rm1(m2+1)e4ηc
m∏

k=1;k �=j
f̃ jk

n∏
α=1

θ̃ (tj − pα)

θ̃(tj − qα)


 (3.10)

where f̃jk = θ̃ (tj − tk − 2η)/θ̃(tj − tk). Thus, we have shown that b(t1) · · · b(tm)v is an
eigenvector of the transfer matrix T (z) with the eigenvalue C̃0(z), if rapidities t1, . . . , tm
satisfy the Bethe ansatz equations

n∏
k=1

θ̃ (tj − pk)

θ̃(tj − qk)
= (−1)rm1(m2+1)e−4ηc

m∏
k=1;k �=j

θ̃ (tj − tk + 2η)

θ̃(tj − tk − 2η)
for j = 1, . . . ,m.

(3.11)

We remark that the factor (−1)rm1(m2+1) should be important when m1 is odd and m2 is even.
Hereafter in the paper, we discuss only the case of m2 = 0 (2Nη = m1) to each of the

topics, for simplicity. However, the case of m2 �= 0 can be discussed similarly by using the
renormalized theta function (3.7).

4. The eight-vertex model and related IRF models

4.1. The 8VSOS and 8VRSOS models

Let us discuss for the discrete η case of Eτ,η(sl2) how one can construct eigenvectors of the
transfer matrices of the 8VSOS model [3] and its restricted versions, the ABF (or 8VRSOS)
model [15] and the cyclic SOS model (8VCSOS model) [20–22], briefly. The RSOS models
associated with the eight-vertex model are reviewed in appendix C.

Let us assume that ,1 = · · · = ,n = 1, hereafter in the paper. Thus, we have n = ,

which is given by 2- or 2- + 1 for an integer -. We also have n = L, where L is the lattice size
defined in section 1. We shall denote n and , by L, hereafter.
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We introduce the L-operator [14] for the tensor productW = V ⊗L

L(z, λ) = R(01)


z − z1, λ− 2η

L∑
j=2

h(j)


R(02)

×

z− z2, λ− 2η

L∑
j=3

h(j)


 · · ·R(0L)(z− zL, λ). (4.1)

Here we recall that the transfer matrix T(z) of Eτ,η(sl2) for W is given by the trace of the
L-operator: T (z, λ) = tr0L(z, λ).

The R-matrix R(z, λ) of Eη,τ (sl2) (which has been given in equation (2.3)) is related
to the Boltzmann weights w(a, b, c, d; z) of the 8VSOS model [3] through the following
relation [14]

R(z,−2ηd)e[c− d] ⊗ e[b − c] =
∑
a

w(a, b, c, d; z)e[b− a] ⊗ e[a − d]. (4.2)

Here a, b, c, d denote the spin variables of the IRF model, which take integer values [3].
The spin variables have the constraint that the difference between the values of two nearest-
neighbouring spins should be given by ±1. Through the relation (4.2), we can show that
the transfer matrix T (z) of Eτ,η(sl2) acting on the ‘path basis’ corresponds to that of the
8VSOS model [14]. Here we note that a ‘path’ is given by a sequence of the values of spin
variables satisfying the constraints on adjacent spins. Thus, if we express the eigenvector
b(t1) · · · b(tm)vc of Eτ,η(sl2) in terms of the path basis [3, 14], then it gives that of the transfer
matrix of the 8VSOS model.

For the 8VRSOS model, the values of the spin variables are restricted into N values such
as 0, 1, . . . and N − 1 [15]. In the model, it is not allowed for any pair of neighbouring spins
to have the values 0 and N −1, respectively. Thus, only such paths of the 8VSOS model that
satisfy the conditions are allowed as paths of the 8VRSOS model. The transfer matrix of the
8VRSOS model is defined on the restricted space of paths. We can construct eigenvectors of
8VRSOS model in the restricted space of paths.

For the 8VSOS and ABF models, the periodic boundary conditions on the path basis are
satisfied only when L = 2m. Thus, we can construct the eigenvectors of the models only for
the case when L is even.

For the cyclic SOS (or 8VCSOS) model [20–22], the spin variables take the restricted
values such as 0, 1, . . . , N − 1, where the values 0 and N − 1 are allowed for any pair of
neighbouring spins. Thus, the admissibility condition on the spin values can be expressed by
a cyclic graph of N nodes. The periodic boundary conditions on the path basis of the cyclic
SOS model are satisfied under the constraint: L− 2m = rN , where r can be nonzero integers.
Therefore, for the cyclic SOS model, we can consider eigenvectors also for the odd lattice-size
case. For instance, we may take L = 7 and consider the case of N = 3, r = 1 and m = 2, which
satisfies the constraint: L− 2m = rN . Furthermore, when 2Nη = m1 with m1 odd, then the
factor (−1)rm1 in the formula of eigenvalues (3.4) is given by −1, not by 1.

4.2. The eight-vertex model

Let us introduce the theta functions θ0(z) and θ1(z) satisfying θα(z + 1) = (−1)αθα(z) and
θα(z + τ ) = ie−π i(z+τ/2)θ1−α(z) for α = 0, 1, where we define θ1(z) by θ1(z, τ ) = θ(z, 2τ )
[14]. In terms of the theta functions, the R-matrix of the eight-vertex model [1] is given by

R8V (z) = a8V (z) (E11 ⊗ E11 + E22 ⊗ E22) + b8V (z) (E11 ⊗E22 + E22 ⊗ E11)

+ c8V (z) (E12 ⊗ E21 + E21 ⊗ E12) + d8V (z) (E12 ⊗ E12 + E21 ⊗ E21) (4.3)
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where the Boltzmann weights a8V (z), b8V (z), c8V (z) and d8V (z) are expressed as

a8V (z) = θ0(z)θ0(2η)

θ0(z− 2η)θ0(0)
b8V (z) = θ1(z)θ0(2η)

θ1(z− 2η)θ0(0) (4.4)
c8V (z) = − θ0(z)θ1(2η)

θ1(z − 2η)θ0(0)
d8V (z) = − θ1(z)θ1(2η)

θ0(z− 2η)θ0(0)
.

The transfer matrix T8V (z) of the eight-vertex model is given by the trace over the zeroth
vector space: T8V (z) = tr0L8V (z), where the operator L8V (z) is defined by

L8V (z) = R8V (z− z1)
(01) · · ·R8V (z − zL)

(0L). (4.5)

Let us consider the correspondence between the eight-vertex model and the 8VSOS model
[3]. We introduce some symbols of [14] for Eτ,η(sl2). We define the following matrix

S(z, λ) =
(
θ0(z− λ + 1/2) −θ0(−z− λ + 1/2)

−θ1(z− λ + 1/2) θ1(−z− λ + 1/2)

)
. (4.6)

Some essential part of the vertex–IRF correspondence [3] is expressed in terms of the matrices

S(w, λ)(2) S
(
z, λ− 2ηh(2)

)(1)
R(z −w, λ) = R8V (z−w) S(z, λ)(1)S

(
w, λ− 2ηh(1)

)(2)
.

(4.7)

Here the symbol S(z, λ)(j) denotes the matrix S(z, λ) acting on the jth space V (zj ) of the
tensor productW = V ⊗L. Next, we consider the tensor product of the matrices acting onW as

SL(λ) = S(zL, λ)
(L)S

(
zL−1, λ− 2ηh(L)

)(L−1) · · · S

z1, λ− 2η

L∑
j=2

h(j)



(1)

. (4.8)

Then, through the vertex–IRF correspondence [3, 14], we have

L8V (z)S(z, λ)
(0)SL

(
λ− 2ηh(0)

) = SL(λ)S(z, λ− 2ηh)(0)L(z, λ) (4.9)

where h = ∑L
j=1 h

(j). Let us denote the eigenvector b(t1) · · · b(tm)vc constructed in section 3
by the symbol uc. Here we assume that the rapidities t1, . . . , tm satisfy the Bethe ansatz
equations (3.6). We also note that huc = (L − 2m)uc = rN uc. When rm1 is even, we can
show

T8V (z)SL(λ) uc = SL(λ + 2η)a(z, λ + 2η) uc + SL(λ− 2η)d(z, λ− 2η) uc . (4.10)

Let us now define the following:

8c(λ) =
2N−1∑
k=0

SL(λ + 2ηk)uc(λ + 2ηk) (4.11)

where the parameter c satisfies the condition: exp(4Nηc) = 1. Here we note that in the
construction (4.11) of 8c, we have assumed that uc(λ + 4Nηc) = uc(λ). It follows from
(4.10) that 8c(λ) gives an eigenvector of the transfer matrix T8V (z) with the eigenvalueC0(z)

defined by equation (3.4): T8V (z)8c = C0(z)8c. Thus, we have discussed the construction
of eigenvectors for the discrete η case of 2Nη = m1, when L− 2m = rN (r ∈ Z) and rm1 is
even. Here we recall that W = V ⊗L and , = n = L.

Let us discuss the possible connection of the present method for constructing eigenvectors
of the eight-vertex model to that of [2–4]. In fact, it is not clear yet how Baxter’s method for
the the general case discussed in [3, 4] is related to the present method explicitly. We first
note that the parameter λ in the paper should correspond to the parameter s or t of Baxter’s
eigenvectors in [2–4]. However, it seems that there is a large difference between the ways
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of controlling the parameter λ or s for the two methods. Thus, although there could exist
more intrinsic connections between the two methods, we can only point out here that some
important relations are common to both of them as mathematical formulae, such as the vertex–
IRF correspondence (4.7) and the sum over the eigenvectors in equation (4.11). Furthermore,
we can compare some examples of eigenvectors constructed by the two methods, explicitly.
For instance, the eigenvector constructed in [2] corresponds to the eigenvector8c with m = 0
and c = 0 for the case of 2Nη = 2m1 + 2m2τ in the paper.

5. Degenerate eigenvectors

Let us construct degenerate eigenvectors for the transfer matrix of the eight-vertex model. We
can also construct eigenvectors of the 8VSOS, ABF and cyclic SOS models similarly by this
method. First, we recall that the number m of the b operators in the product b(t1) · · · b(tm)vc
satisfies the condition (3.1): L− 2m = rN . Here we note that rm1 is even for the eight-vertex
model and also that r = 0 for the 8VSOS and ABF models.

Let us now assume that out of m rapidities t1, . . . , tm, the first R rapidities tj for
j = 1, . . . , R are of standard ones satisfying the Bethe ansatz equations (3.6) with m replaced
by R, while the remaining N F rapidities are formal solutions given by

t(α,j) = t(α) + η(2j − N − 1) + εαr
(α)
j for j = 1, . . . , N. (5.1)

Here εα are free parameters, and we shall consider the limit of sending εα to zero, later. We
call the set of N rapidities t(α,1), . . . , t(α,N), the complete N-string with centre t(α). Here the
index α runs from 1 to F. Furthermore, we assume that the index (α, j) corresponds to the
numberR +N(α−1)+ j for 1 � α � F and 1 � j � N . Here we note that the importance of
complete N-strings has been recently discussed for the sl2 loop algebra symmetry of the six-
vertex model [19], while for the eight-vertex model the complete strings have been suggested
in [4] briefly in another context.

When εα are not zero, through the commutation relations such as shown in equation (2.5),
we can show the following relation

T (z)b(t1) · · · b(tR+NF) vc = C0(z)b(t1) · · · b(tR+NF) vc

+


 R∑

j=1

+
R+NF∑
j=R+1


 Cj b(t1) · · · b(tj−1)b(z)b(tj+1) · · · b(tR+NF ) vc. (5.2)

Now, let us consider the limit of sending εα to zero. If we naively take the zero limits for εα ,
then the convergence of the rhs of equation (5.2) is not certain. We specify the limit as follows:
setting εα = ε, we divide equation (5.2) by εF and send ε to zero. Then, we can show that
each of the terms of equation (5.2) indeed converges, by making use of the following formula∏
1�α<β�m

fPαPβ =
∏

1�α<β�m

fαβ

×
∏

1�j<k�m

(
θ(tj − tk + 2η)

θ(tj − tk − 2η)

)H(P−1j−P−1k)

for P ∈ Sm. (5.3)

Here H(x) denotes the Heaviside step function: H(x) = 1 for x > 0, H(x) = 0 otherwise. The
symbol P ∈ Sm denotes an element P of the symmetric group of m elements, where j is sent
to Pj ∈ {1, 2, . . . ,m} for j = 1, . . . ,m. We recall that fjk = θ(tj − tk − 2η)/θ(tj − tk). The
formula (5.3) has been proved in [23].

Let us consider an explicit formula describing the ‘matrix elements’ of b(t1) · · · b(tm)vc,
which has been derived in [14] for the case of , = 2m and generic η. We can show that
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almost the same formula is valid also for the case of , − 2m �= 0 when 2Nη = m1 + m2τ .
For the tensor product W = V ⊗L, we have

b(t1) · · · b(tm)vc = (−1)mec(λ+2ηm)
∑
P∈Sm

∑
1�j1<···<jm�L


 m∏
α=1

L∏
β=jα+1

θ(tPα − zβ)

θ(tPα − zβ − 2η)




×
∏

1�α<β�m

fPαPβ ×
m∏
α=1

θ(λ + tPα − zjα − 2η(L− 2m− jα + α))

θ(tPα − zjα − 2η)
σ−
j1

· · ·σ−
jm

|0〉. (5.4)

Here σ−
j denotes the Pauli matrix σ− acting on the jth vector space, and |0〉 the vacuum

vector with all spins up. Here we also note that pk = zk and qk = zk + 2η since ,k = 1 for
k = 1, . . . , L.

We now discuss the behaviour of the terms of equation (5.2) under the limit of ε
sent to zero. In the limit, the factors

∏
1�α<β�m fPαPβ play the most important role in

equation (5.4). With the formula (5.3), we can single out the vanishing factors from the
expression. We can show that the second part of (5.3) converges in the limit, which is given by∏

1�j<k�m(θ(tj − tk + 2η)/θ(tj − tk − 2η))H(P
−1j−P−1k). For the complete strings t(α,j) with

1 � j � N , we have specified their ordering such that t(α,j) − t(α,k) = 2η(j − k) + O(ε) for
1 � j < k � N . Thus, the factor θ

(
t(α,j) − t(α,k) + 2η

)/
θ

(
t(α,j) − t(α,k) − 2η

)
for an ordered

pair of j < k never diverges except when j = 1 and k = N. If P−1(α, 1) > P−1(α,N), then
we have ordered pairs of (α, j) and (α, j + 1) for some j such that P−1(α, j) > P−1(α, j + 1),
whose factors cancel out the vanishing denominator: θ(t1 − tN − 2η). Here we note that
t(α,j) − t(α,j+1) + 2η = O(ε).

Let us denote the difference: r(α)a,b = r(α)a − r
(α)

b by r(α)a,b . We can show that all the terms of

rhs of equation (5.2) converge under the limit ε → 0, if r(α)a,b satisfy the following

r
(α)

a−1,a

r
(α)
a,a+1

= (−1)rm1e−4ηc
R∏
k=1

θ
(
t(α,a) − tk + 2η

)
θ

(
t(α,a) − tk − 2η

)
L∏
β=1

θ
(
t(α,a) − zβ − 2η

)
θ

(
t(α,a) − zβ

)
for a = 1, . . . , N. (5.5)

Here we have assumed for a = N and a = 1 the lhs of (5.5) denotes r(α)N−1,N

/
r
(α)
N,1 and r(α)N,1

/
r
(α)
1,2 ,

respectively. The centre t(α) of the complete N-string should satisfy the two constraints on r(α)a,b

that are expressed in terms of the centre t(α) through equation (5.5), as follows:

r
(α)
1,2

r
(α)

N,1

+
r
(α)
2,3

r
(α)

N,1

+ · · · +
r
(α)
N−1,N

r
(α)

N,1

+ 1 = 0 (5.6)

r
(α)

1,2

r
(α)
2,3

· r
(α)

2,3

r
(α)
3,4

· · · r
(α)

N−1,N

r
(α)
N,1

· r
(α)

N,1

r
(α)
1,2

= 1. (5.7)

It is easy to see from equation (5.5) that the constraint (5.7) holds if and only if exp(4Nη c) = 1.
For the eight-vertex model, the condition has already been considered when we construct 8c

in section 4. Therefore, equation (5.6) gives the only constraint on the centres t(α). From
solutions of equation (5.6) we can construct degenerate eigenvectors with the eigenvalue
(−1)Fm1C0(z) with the rapidities t1 . . . , tR , for any Nth root of unity assigned to exp(4η c).
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We now discuss solutions of equation (5.6). Let us introduce a function of variable z

G(z) = 1 +
N−1∑
a=1

(−1)rm1ae−4ηca

×
N∏

j=a+1


 R∏
k=1

θ(z− tk + η(2j −N + 1))

θ(z− tk + η(2j −N − 3))

L∏
β=1

θ(z− zβ + η(2j −N − 3))

θ(z− zβ + η(2j −N − 1))


 .

(5.8)

Then, equation (5.6) of centres t(α) is expressed as

G
(
z = t(α)

) = 0 for α = 1, . . . , F. (5.9)

The function G(z) is an elliptic function of z with periods 1 and τ when rm1 is even and with
periods 1 and 2τ when rm1 is odd. Making use of the Bethe ansatz equations (3.6) for R
rapidities t1 . . . , tR , we can show that G(z) has exactly L poles. It follows from the theorem of
elliptic functions that G(z) has L zeros, which give solutions of centres t(α). For an illustration,
the function G(z) for the case of N = 3 is given by

G(z) = 1 + f (z) +
1

f (z + 4η)
(5.10)

where f (z), which corresponds to r(α)1,2

/
r
(α)
3,1 , is explicitly given by

f (z) = (−1)rm1e4ηc
R∏
k=1

θ(z− tk − 4η)

θ(z− tk)

L∏
β=1

θ(z− zβ − 2η)

θ(z− zβ − 4η)
. (5.11)

Let us now discuss the dimensions of degenerate eigenspaces. In fact, the L zeros ofG(z)
do not necessarily give independent eigenvectors, as we shall see shortly. For an illustration,
let us consider the case of R = 0, explicitly. Here we also assume that L/N is an even integer.
We can show that if G(z) = 0, then we have G(z + 2η) = 0. For example, let us consider the
case of N = 3. IfG(w1) = 0, then we have f (w1 + 2η)f (w1 + 4η)G(w1) = 0. From equation
(5.10) and f (z)f (z + 2η)f (z + 4η) = 1, we have

f (w1 + 2η)f (w1 + 4η)G(w1)

= f (w1)f (w1 + 2η)f (w1 + 4η) + f (w1 + 2η)f (w1 + 4η) + f (w1 + 2η)

= 1 +
1

f (w1)
+ f (w1 + 2η) = G(w1 + 2η). (5.12)

We thus have a set of N zeros of G(z) as w1, w1 + 2η, . . . , w1 + 2(N − 1)η. The L zeros of
G(z) are given by L/N sets of complete N-strings with L/N centres. Therefore, the number
of independent solutions is given by L/N. Here we note that the L/N centres should be
independent in general, since the inhomogeneous parameters zβ are generic.

Let us show that the number 2L/N gives the dimension of the degenerate eigenspace of the
XYZ model thus constructed for R = 0 with an Nth root of unity assigned to exp(4ηc). We
can calculate it by the binomial expansion

2L/N =
L/N∑
F=0

(L/N)!

(L/N − F)!F !
(5.13)

which corresponds to the sum of the dimensions of the degenerate subspaces withF = 0, 1, . . .
and L/N, respectively. Here, the dimension of the degenerate sub-eigenspace with F sets of
complete N-strings is given by the number of ways for selecting F centres from the L/N centres
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of the L/N complete N-strings. Here we note that the factor (−1)Fm1 for the eigenvalue of the
transfer matrix is cancelled when we take the logarithmic derivative of the eigenvalue of the
transfer matrix as shown in equation (125) of [3].

Let us now remark that we have an extra factor N for the dimension of the degenerate
eigenspace of the XYZ spin chain with R = 0, since we may choose any Nth root of unity
for exp(4ηc). Thus, we obtain the number N 2L/N as the degeneracy in total. In fact, we can
show that the degenerate eigenvalue of the XYZ Hamiltonian with R = 0 does not depend
on the choice of c by using equation (125) of [3], or more explicitly, by equation (5.37) of
[7]. For the case of L = 12 and N = 3, the numbers 2L/N and N 2L/N are given by 16 and 48,
respectively, which are consistent with the numerical result [24].

Let us now consider the trigonometric limit for the degenerate eigenvectors of the XYZ
spin chain. After taking the limit, the number of down-spins M becomes a good quantum
number for the eigenvectors. The limit of the eigenvector 8c of the XYZ model corresponds
to a linear combination of eigenvectors of the XXZ model labelled by several M. Here we note
that we replace λ with λ + τ/4, and also that θ1(z + τ/2) → i exp(−πz) and θ0(z + τ/2) → 1
when τ → i∞. Thus, from expression (4.8) of SL(z, λ), we can show that the matrix elements
of SL(z, λ) in the sector of M down-spins have the factor exp(−π iMλ) with respect to the
variable λ. Since the eigenvector 8c is given by the product of the matrix SL(z, λ) and the
vector b(t1) · · · b(tm)vc, all the entries of the XXZ eigenvectors with M down-spins derived
from8c have the factor exp((c− π i(m +M))λ) with respect to the variable λ. We now recall
the sum (4.11). If exp(2η(c− π i(m +M))) �= 1, then the XXZ eigenvectors derived from the
XYZ eigenvector8c do not have M down-spins. Here we note

2N−1∑
j=0

exp(2ηj (c − π i(m + M))) = 0. (5.14)

When exp(2η(c− π i(m + M))) = 1, the XXZ eigenvectors with M down-spins derived from
8c do not vanish. For the degenerate eigenspace with the dimension 2L/N for R = 0 and c = 0,
we put M = m in each sector of m, where m is given by m = NF for F = 0, . . . , L/N . Thus,
the dimension of the degenerate XXZ eigenvectors derived from the XYZ eigenvector with
c = 0 through the trigonometric limit is given by 2L/N, in total. We note that it is equivalent to the
dimension of the largest degenerate eigenspace associated with the sl2 loop algebra of the XXZ
spin chain with L lattice sites in the sector SZ ≡ 0 (modN) [18], where SZ = (L − 2M)/2.
Furthermore, we can explicitly calculate by using equation (5.4) the trigonometric limits of the
degenerate eigenvectors of the XYZ spin chain with the complete N-strings. Let us consider
the case of R = 0 and c = 0: when F = 0 or L/N, the limits correspond to the degenerate XXZ
eigenvectors associated with the sl2 loop algebra [18]; when F = 1, . . . , L/N − 1, however,
we have a conjecture that the limits can be expressed as linear combinations of the degenerate
XXZ eigenvectors of the complete N-strings, which have been shown to be associated with
the sl2 loop algebra in [19]. Thus, as a summary of the above discussion,we may conclude
that at least some spectral degeneracy of the XYZ model is related to that of the XXZ model
associated with the sl2 loop algebra.

6. Discussions

We have shown that there exists a large degeneracy in the spectrum of the XYZ spin chain for
the discrete η case of 2Nη = m1 + m2τ . The dimension N2L/N of the degenerate eigenspace
increases exponentially with respect to the lattice length L. Thus, we may have a conjecture
that the spectral degeneracy of the XYZ model should have nontrivial effects on the continuum
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limits. We also note that in the connection between the spectra of the eight-vertex model and
the six-vertex model under the trigonometric limit, the Bethe ansatz equations for the XXZ
model under the twisted boundary conditions should play a central role. We shall discuss the
connection explicitly in later publications.

The relation (4.2) between the R-matrix of Eτ,η(sl2) and that of the 8VSOS model is
fundamental in the elliptic quantum groups. We may interpret that the R-matrix of Eτ,η(sl2)

is derived from that of the 8VSOS model through the relation. In fact, we can discuss the
R matrices of the elliptic quantum groups associated with the ABCD-type Lie algebras [12]
based on the Boltzmann weights [25, 26] of the ABCD IRF models.

As an application of the observation in the last paragraph, we can discuss the spectral
degeneracy of the A-type IRF models [25] through the nested algebraic Bethe ansatz of the
associated elliptic quantum groups. Here we note that the A-type IRF models are related to the
elliptic vertex model [27], which corresponds to the higher rank extension of the eight-vertex
model, through the vertex–IRF correspondence. This approach should be related to the higher
rank loop-algebra symmetry of the vertex models discussed in [28].

Finally, we remark that it should be straightforward to discuss the spectral degeneracy
for the higher spin generalization of the XYZ model by making use of the higher spin version
[29] of the vertex–IRF correspondence.
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Appendix A. The SL2 loop algebra

Let us introduce the loop algebra for sl(2, C). The loop algebra associated with sl2 consists
of the space of analytic mappings from the circle S1 to sl2. If T a is a basis of sl2 and S1 is
considered as the unit circle in the complex plane with coordinate z = exp(2π it), then Fourier
analysis shows that a topological basis of the vector space of these maps is given by T a ⊗ zn

for n ∈ Z [30]. The commutation relation is defined by [T a ⊗zm, T b⊗zn] = [T a, T b]⊗zm+n.
The affine Lie algebra ŝl2 is given by the central extension of the sl2 loop algebra together
with the derivation d: ŝl2 = sl2 ⊗ C[z, z−1] ⊕ Cc⊕ Cd , where the commutation relations are
given by

[T a ⊗ zm, T b ⊗ zn] = [T a, T b] ⊗ zm+n + mδm+n,0 tr(T aT b)c

[d, T a ⊗ zm] = mT a ⊗ zm [c, T a ⊗ zm] = 0. (A.1)

We shall also consider the affine algebra with no derivation d: ŝl
′
2 = sl2 ⊗ C[z, z−1] ⊕ Cc.

Let us denote the Chevalley generators of the sl2 by e, f and h. Then, we may define the
Chevalley generators of ŝl2 by the following: h0 = c − h ⊗ 1, h1 = h ⊗ 1, e0 = f ⊗ z,
f0 = e ⊗ z−1, e1 = e ⊗ 1, f1 = f ⊗ 1 and d = t∂/∂t . The Cartan subalgebra ĥ of ŝl2
is spanned by h0, h1 and d. In terms of the Chevalley basis, the defining relations of ŝl2 are
given by
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[h0, h1] = 0 [d, hj ] = 0 (j = 0, 1)

[hi, ej ] = aij ej [hi, fj ] = −aijfj [ei, fj ] = δijhj (i, j = 0, 1)
(A.2)

[d, ej ] = δ0,j ej [d, fj ] = −δ0j fj (j = 0, 1)

[ei, [ei, [ei, ej ]]] = 0 [fi, [fi, [fi, fj ]]] = 0 (i, j = 0, 1 i �= j).

Here, the Cartan matrix (aij ) of A(1)
1 is defined by(

a00 a01

a10 a11

)
=

(
2 −2

−2 2

)
. (A.3)

Let us now review the connection of the sl2 loop algebra to the XXZ Hamiltonian HXXZ

at the root of unity. Hereafter, we assume that q2N = 1. We introduce the operators S±(N) by

S±(N) =
∑

1�j1<···<jN�L

q
N
2 σ

Z ⊗ · · · ⊗ q
N
2 σ

Z ⊗ σ±
j1

⊗ q
(N−2)

2 σZ ⊗ · · · ⊗ q
(N−2)

2 σZ

⊗ σ±
j2

⊗ q
(N−4)

2 σZ ⊗ · · · ⊗ σ±
jN

⊗ q−N
2 σ

Z ⊗ · · · ⊗ q− N
2 σ

Z

. (A.4)

We denote the operators obtained from S±(N) by T ±(N) via replacing q with q−1. Explicitly,
we have

T ±(N) =
∑

1�j1<···<jN�L

q−N
2 σ

z ⊗ · · · ⊗ q−N
2 σ

z ⊗ σ±
j1

⊗ q− (N−2)
2 σ z ⊗ · · · ⊗ q− (N−2)

2 σ z

⊗ σ±
j2

⊗ q− (N−4)
2 σ z ⊗ · · · ⊗ σ±

jN
⊗ q

N
2 σ

z ⊗ · · · ⊗ q
N
2 σ

z

. (A.5)

Let the symbol T6V (v) denote the (inhomogeneous) transfer matrix of the six-vertex model.
Here we recall that SZ denotes the z-component of the total spin operator. Then we can show
the (anti) commutation relations in the sector SZ ≡ 0 (mod N) [18] as

S±(N)T6V (v) = qNT6V (v)S
±(N) T ±(N)T6V (v) = qNT6V (v)T

±(N). (A.6)

Since the XXZ Hamiltonian HXXZ is given by the logarithmic derivative of the (homogeneous)
transfer matrix T6V (v), we have in the sector SZ ≡ 0 (mod N )[

S±(N),HXXZ

] = [
T ±(N),HXXZ

] = 0. (A.7)

Thus, the operators S±(N) and T ±(N) commute with the XXZ Hamiltonian in the sector SZ ≡ 0
(mod N).

Let us now consider the algebra generated by the operators S±(N) and T ±(N) [18]. When
q is a primitive 2Nth root of unity, or a primitive Nth root of unity with N odd, we can show
that S±(N) and T ±(N) satisfy the relations in the following [18]:[

S+(N), T +(N)
] = [

S−(N), T −(N)] = 0 (A.8)[
SZ, S±(N)] = ±NS±(N) [

SZ, T ±(N)] = ±NT ±(N) (A.9)

(
S+(N)

)3
T −(N) − 3

(
S+(N)

)2
T −(N) S+(N) + 3S+(N) T −(N) (

S+(N)
)2 − T −(N) (

S+(N)
)3 = 0(

S−(N))3
T +(N) − 3

(
S−(N))2

T +(N) S−(N) + 3S−(N) T +(N)
(
S−(N))2 − T +(N)

(
S−(N))3 = 0(

T +(N)
)3
S−(N) − 3

(
T +(N)

)2
S−(N) T +(N) + 3T +(N) S−(N) (

T +(N)
)2 − S−(N) (

T +(N)
)3 = 0(

T −(N))3
S+(N) − 3

(
T −(N))2

S+(N) T −(N) + 3T −(N) S+(N) (
T −(N))2 − S+(N) (

T −(N))3 = 0

(A.10)

and in the sector Sz ≡ 0 (mod N) we have
[
S+(N), S−(N)] = [

T +(N), T −(N)] = −(−q)N 2

N
Sz. (A.11)
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When q is a primitive 2Nth root of unity with N even, or when q is a primitive Nth root of
unity with N odd, then, we consider the identification in the following:

e0 = S+(N) f0 = S−(N) e1 = T −(N) f1 = T +(N) h0 = −h1 = 2

N
Sz.

(A.12)

We see that the operators ej, fj, hj for j = 0, 1, satisfy the defining relations (A.2) of the algebra

ŝl
′
2 with c = 0. The relations (A.8) and (A.11) correspond to some relations of (A.2) in the

following: [hi, ej ] = aijej , [hi, fj ] = −aijfj and [ei, fj ] = δijhj . The relations (A.10)
correspond to the Serre relations of (A.2). Thus, they give a representation of the sl2 loop
algebra or a finite-dimensional representation of ŝl

′
2.

When q is a primitive 2Nth root of unity with N odd, we may put as follows:

e0 = iS+(N) f0 = iS−(N) e1 = iT −(N) f1 = i T +(N) h0 = −h1 = 2

N
Sz.

(A.13)

We see that they give a representation of the sl2 loop algebra or a finite-dimensional
representation of ŝl

′
2.

Finally we note that the loop algebras with higher ranks are discussed for some vertex
models [28].

Appendix B. Evaluation modules of the elliptic quantum group

We first define a diagonalizable h-module [13, 14]. Let V be a module over the one-
dimensional Lie algebra h with the generator h such that V is the direct sum of finite-
dimensional eigenspaces V [µ] of h, labelled by the eigenvalue µ. We call such a module a
diagonalizable h-module.

Let us now define a module over the elliptic quantum group Eτ,η(sl2) [13, 14]. An
Eτ,η(sl2) module is a diagonalizable h-module V together with a meromorphic function
L(z, λ) on C ⊗ h with values in End(C2 ⊗ V ) such that the dynamical Yang–Baxter relation
(2.1) holds in End(C2 ⊗ C

2 ⊗ V ).
When V = C

2, L(z, λ) = R(z− z0, λ) gives a module overEτ,η(sl2), which we call the
fundamental representation with evaluation point z0. More generally, for any pair of complex
numbers,,, z, we can define an evaluation Verma moduleW,(z) as follows [13]. Let W,(z)

be an infinite-dimensional complex vector space with a basis ek (k ∈ Z�0). We define an
action of f (h) by

f (h)ek = f (,− 2k)ek (k = 0, 1, . . .) (B.1)

and that of the other generators by

a(w, λ)ek = θ(z−w + (, + 1 − 2k)η)

θ(z−w + (, + 1)η)

θ(λ + 2kη)

θ(λ)
ek

b(w, λ)ek = −θ(−λ + z −w + (,− 1 − 2k)η)

θ(z−w + (, + 1)η)

θ(2η)

θ(λ)
ek+1

(B.2)
c(w, λ)ek = −θ(−λ− z + w + (, + 1 − 2k)η)

θ(z−w + (, + 1)η)

θ(2(, + 1 − k)η)

θ(λ)

θ(2kη)

θ(2η)
ek−1

d(w, λ)ek = θ(z−w + (−, + 1 + 2k)η)

θ(z−w + (, + 1)η)

θ(λ− 2(,− k)η)

θ(λ)
ek.
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It is shown in [13] that these formulae define an Eτ,η(sl2)-module structure on W,(z); if
, = n + (m + -τ)/2η, where n, m and - are integers with n � 0, then the space spanned by
ek, k > n, is a submodule. The quotient space L,(z) is a module of dimension n + 1.

The evaluation Verma module W,(z) is a highest weight module with highest weight
vector e0 and highest weight (,,A(w, λ),D(w, λ)), where A(w, λ) = 1 and

D(w, λ) = θ(z− w + (−, + 1)η)

θ(z−w + (, + 1)η)

θ(λ− 2,η)

θ(λ)
. (B.3)

Let us denote the finite dimensional module L,(z) by V,(z) if , = n + (m + -τ)/2η
where n, m, - are integers with n � 0, and the infinite-dimensional module W,(z) if , does
not have this form. Then, the following proposition plays an important role in section 3.

Proposition B.1. [13] Let W = V,1(z1) ⊗ · · ·V,n
(zn) be the tensor product of evaluation

modules W,j
(zj ), and let , = ,1 + ,2 + · · · + ,n. Then, W [,] = Cv0, and for every z we

have

a(z)v0 = A(z, λ)v0 c(z)v0 = 0 d(z)v0 = D(z, λ)v0 (B.4)

where

A(z, λ) = 1 D(z, λ) = θ(λ− 2,)

θ(λ)

n∏
j=1

θ(z− pj)

θ(z− qj )
. (B.5)

Here pj = zj + η(−,j + 1) and qj = zj + η(,j + 1).

Appendix C. The IRF models related to the eight-vertex model

Let us consider a two-dimensional square lattice with a spin variable ai associated with each
site i [21]. We shall call the ai a state and assume that ai ∈ S with S being a set of the states.
The set S is finite for restricted solid-on-solid models (RSOS models), while it is infinite for
unrestricted solid-on-solid models (unrestricted SOS models). Here we note that unrestricted
and restricted SOS models are also called IRF models [5].

Let us consider the case of RSOS models. Let s denote the number of elements in S.
Consider an s × s matrix C satisfying the following conditions [21, 22]:

(i) Cab = Cba = 0 or 1
(ii) Caa = 0

(iii) for each a ∈ S, there should exist b ∈ S such that Cab = 1.

For such a choice of C, we impose a restriction that two states a and b can occupy the
neighbouring lattice sites if and only ifCab = 1. We call such a pair of states (a, b) admissible.
For the case of unrestricted models, the infinite matrix C satisfies the conditions (i), (ii) and
(iii) with an infinite set S.

For an illustration, let us consider the restricted eight-vertex solid-on-solid model
(restricted 8V SOS model), which we also call the ABF model [15]. For the N-state case, we
have S = {1, 2, . . . , N}. The nonzero matrix elements of C are given by Cj,j+1 = Cj+1,j = 1
for j = 1, 2, . . . , N − 1; other matrix elements such as C1,N and CN,1 are given by zero.

Let ai, aj, ak, and a- be the four states assigned to the lattice sites i, j, k, and - surrounding
a face. Here i, j, k, - are ordered counterclockwise from the southwest corner. We assume that
an elementary configuration is given by the configuration of the four spin variables around the
face and the probability of having ai, aj, ak, a- around the face is denoted by the Boltzmann
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weight w(ai, aj , ak, a-; z). Here the variable z is called the spectral parameter. The model is
called solvable if the Boltzmann weights satisfy the Yang–Baxter relations in the following:∑
g

w(a, b, g, f ; z− w)w(f, g, d, e; z)w(g, b, c, d;w)

=
∑
g

w(f, a, g, e;w)w(a, b, c, g; z)w(g, c, d, e; z−w) (C.1)

where the summation of the variable g is taken over all the admissible states.
Let us introduce explicitly some solutions of the Yang–Baxter relations. We consider a

slightly generalized version of equation (4.2), where λ is given by λ = −2ηd −w0 with some
parameter w0. Then, we have the Boltzmann weights w(a, b, c, d; z,w0) of the unrestricted
eight-vertex solid-on-solid model (unrestricted 8V SOS model) as

w(d + 1, d + 2, d + 1, d; z,w0) = w(d, d − 1, d − 2, d − 1; z) = 1

w(d − 1, d, d + 1, d; z,w0) = α(z,−2ηd −w0)

w(d + 1, d, d − 1, d; z,w0) = α(z, 2ηd + w0) (C.2)

w(d + 1, d, d + 1, d; z,w0) = β(z, 2ηd + w0)

w(d − 1, d, d − 1, d; z,w0) = β(z,−2ηd −w0).

The Boltzmann weights (C.2) satisfy the Yang–Baxter relations (C.1).
Let us introduce a gauge transformation

w(a, b, c, d; z) → w(a, b, c, d; z) gc
ga

. (C.3)

Then, we see that the transformed Boltzmann weights also satisfy the Yang–Baxter relations
(C.1). Setting ga = exp(π ia/2)

√
θ(2ηa + w0) (a ∈ Z), applying (C.3) to (C.2), and

multiplying the Boltzmann weights by ρ(z) = θ(2η − z)/θ(2η), we have the standard
expressions of the Boltzmann weights such as in [15, 20–22] in the following:

w(d + 1, d + 2, d + 1, d; z,w0) = w(d, d − 1, d − 2, d − 1; z) = θ(2η − z)

θ(2η)
w(d − 1, d, d + 1, d; z,w0) = w(d + 1, d, d − 1, d; z,w0)

= θ(z)

θ(2η)

√
θ(2η(d + 1) + w0)θ(2η(d − 1) + w0)

θ(2ηd + w0)
(C.4)

w(d + 1, d, d + 1, d; z,w0) = θ(z + 2ηd + w0)

θ(2ηd + w0)

w(d − 1, d, d − 1, d; z,w0) = θ(z− 2ηd −w0)

θ(2ηd + w0)
.

Let us now consider the Boltzmann weights of the ABF and CSOS models. Here we
assume that 2Nη = m1, where integer m1 has no common divisor with N. If we set w0 = 0,
then we have the Boltzmann weights of the ABF model. We can show that the Boltzmann
weights (C.4) satisfy the Yang–Baxter relations (C.1) with the finite set: S = {1, 2, . . . , N}. If
we set w0 �= 0, then we have the Boltzmann weights of the cyclic SOS model (CSOS model).
We can show that the Boltzmann weights (C.4) satisfy the Yang–Baxter relations with the
finite set: S = {1, 2, . . . , N} and the cyclic admissible conditions: C1,N = CN,1 = 1. Here
we note that this RSOS model is called the cyclic SOS model in [20], the A(1)

N−1 model in [21]
and the periodic 8V SOS model in [22] (see also the appendix of [22]).
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